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KIRODUCTION 

Of the activity in infrared spectroscopy in recent years a rela

tively small (although increasing) fraction has been devoted to the in

vestigation of the intensities of absorption bands. The reasons for 

this neglect are manifold, and include the involved nature of the exper

imental procedures required to obtain absolute infrared absorption in

tensities, the difficulty of perforniing normal coordinate analyses of 

polyatoaic molecules, and even the occasional breakdcrtm of the assump

tions used in the theory "sdaereby one derives the polar properties of 

chemical bonds frosi the absolute intensities. These various points 

•will be discussed in detail in later sections. 

In spite of these difficulties, there seems to be a great deal 

of information to be learned about the nature of chemical bonds from 

studies of absolute intensities of infrared absorption bands. 

The research to be described in this thesis is an investigation 

of the absolute infrared absorption intensities of the vibrational 

bands principally ascribable to the stretching of the carbon-i^drogen 

bonds and the deformation (bending) of the hydrogenrcarbon-hydrogen 

angle of some metiyl halides. The particxilar series of compounds "was 

chosen because a reasonably good potential function Ttas available for 

them. This makes it possible to stuc^ the polar properties of the 

carbon-hydrogen bonds of these molecules and establish trends irith 

variation of the halogens. The errors arising from the approximate 

nature of the theory appear in only a systematic TCiy. 
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ELSTCmiCAL BACKGROUl^D 

12 3 
Since -nork on intensities of infrared bands has been revieired * ' 

several times in recent years, a complete review of the subject "?d.ll 

not be attempted here. Bather, the recent -work pertaining to carbon-

hydrogen intensities and the polar properties of the carbon-iiQ^drogen 

bond -will be reviewed together with the work on the infrared spectra 

of the metl^lene halides. 

The polar properties of carbon-hydrogen bonds have attracted a 

great deal of attention in the way of infrared intensity investigation. 

Probably much of this attention arises from interest in the sign of the 

I4, 
C-H bond moment. The results of Coulson's quantum mechanical calcula-

+ 
tions indicate that in methane the C-H polarity is C - H with the 

-10 5 
bond moment equal to 0.ii x 10 e.s.u^ Gent in a review of the 

C-H polarity concluded that in acetylene the 0-H polarity is c"- H*. 

This conclusion is conpatible with chemical evidence for it is well 

known that ace"tylene is acidic and its hydrogens are quite labile. 

The polarity of C-H bonds as a function of the state of hybridization 

of the carbon atom has been discussed by "Salsh^, who has shown that 

as the amount of p character decreases the carbon becomes more nega

tive relative to the l^rdrogen. Thus, in methane, the state of l^ybrid-

3 + -
ization is sp and the polarity is C - H ar^d in acetj''lene with sp 

hybridization the polarity has reversed to C~- H*. Walsh also brought 

forth a corollary which stated that if a substituent on a carbon atcan 

were replaced by a more electronegative substituent (X), more p char

acter woiild be evoked in the carbon orbital participating in the C-Z 
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bond. These arguments •were used in discussing bond strengths and 

polarities ar^d molecular shapes. 

7 
The laethod of Wilson and liells for obtaining the interxsities 

of infrared bands provided the impetus for the many intensity studies 

in recent years. This method, -srhich is almost universally employed 

now, requires that sufficient non-absorbing foreign gas be added to 

the sample to broaden the rotational lines so as to eliTiinate violent 

fluctuations in intensily with frequency. The procedure requires 

the extrapolation of the apparent integrated absorption coefficient 

divided by the partial pressure to zero partial pressure of the ab

sorbing gas. These two steps allow vibrational band intensities to 

be measured to a reasonable accuracy even mth spectrographs of low 

8 9 
resolving power. Ethylene , methane and ethane "were among the first 

compounds to be studied by the method of "iTilson and Wells. For meth

ane^ ( """as found to be 0.31 x 10 e.s.u. and 

*l8 
•was Z 0.55 X 10 e.s.u. This value of ( /<.) agrees reasonably 

, / CH 

•well Tiith the value calculated by Coulson although it sheds no light 

on the sign of the dipole * In ethane ( /^) prr estimated to be 
' vJH 

«X8 
0.3 X 2D e.s.u. from the parallel bending mode -sshile both 

. -10 I ) 
stre-fcching modes yielded a value of I 0.?5 10 e.s.u. for i ̂  r / 

Gil 

In the case of ethylene it Tias also found that the value obtained for 

( ^ cons^tant but -was dependent on the mode of vibration, 

being 0.37 x 10 e.s.u. and 0.^2 x e.s.u. respectively, for the 

^ ̂ and ^ rj inplane bending modes, and 0.77 x 10 e.s.u. for 

the ijj, ou-t-of-plane bending mode, Tfcile _ is 0.60 x lO"^® 
CH 

e.s.u. As a result of these measurements, the approximation of bond 
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moment additivity, as it had been introduced by Rollefson and Ilavens^*^, 

Tjas seen to have some failings. Bell, Biompson and Vago^ and later 

12 
Cole and Thompson studied the intensities of sone bending nodes of 

a number of substituted benzenes in solution. Their results sur^^ested 

»l3 
a mean value of 0.57 x 10~ e.s.u. for -with the hydrogen 

13 atom being at the positive end of the OH dipole, Francis studied 

the intensities of several bands in twelve aliphatic hydrocarbons and 

••i8 l8 
f o u n d  t h a t  ( r a n g e d  from 0.2 x 10 e.s.u, to O.U x 10 e.s.u. 

and ^ about -0.75 x 10~^® e.s.u. (the hydrogen 

sumed to be at the positive end of the C-H dipole). 

There have been several studies made of the band intensities of 

different bands of acetylene. Callonan, JIcKean and Bioii^json^ studied 

0-H stretching band intensity and deduced that(-^j^ -was 0.8 x 10 

e.s.u. 

15 
Van Alten studied the intensities of several bands in C2H2, 

^^2 CgHD using a higher pressure of foreign gas than did Calloman, 

KcKean and Thonpson^. ^ingfield and Straley^^ have studied the inten

sity of ^ ̂ bendii^ vibration in ^^2^2 studied by 

Van Alten). The results of Van Alten and of Wingfield and Straley 

'CH 

—*1 P 
agree quite iirell, both yielding a value of ( ̂ ) about 0.99 x 10"~ 

e.s.u. For (^') CH' Alten obtained a value of O.869 x 10"^*^ e.s.u. 

The bond moments of Hd'? and DCi< -vrere obtained from intensities by 

17 
i^yde and Homig -who found a value of 1.13 x 10 e.s.u. for (zc.) 

+ -10 / A_) ' ^ 
and • 1.05 X 10 e.s.u. for 'Ri-ej also Tsere able to show that 

CH 

if C is positive in the dipole, then H is positive in the G-H 

dipole. 
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18 
Barrow and McKean studied infrared intensities in the aethyl 

f 
halides and found fron the E modes that v J ranges from 

CH. 

t. 0.70 X 10*"^^ e.s.u, for meti^yl fluoride to * 0.23 for aettyl iodide. 

The values of in the class, however, varied fraa. 

1»7 X 10 ̂  e.s.u. for methyl fluoride to about 0,9 x 10 e.s.u. for 

methyl iodide. The values of (^ ) tfere, in general, around 
/ CH 

1 -18 
0,h X 10 e.s.u. 

The intensities of all but one of the bands of dicetiiyl acetylene 

19 have been exaTiined by Mills and Thompson -sho found the probable 

value of the C-H dipole in this conpcund to be about O.ii x lO" e.s.u. 
O 

and that of the C-C dipole to be about 1 x 10 e.s.u. They find 

that if the acetylenic carbon atoms have a residual negative charge 

(•which is considered most probable), then the hgrdrogen atoms in the C-fl 

bonds Jirust carry a residual positive charge. 

20 Eecently, the isork of Hisatsvine and Eggers on the intensities 

and bond moments of fonaaldeigrde -was published. The results chosen for 

the C-K properties were ( equal to 0.50 x 10 e.s.u. (C~- K"*") 
CH 

and equal to 1.3 x 10"^® e.s.u., although, they did comment 

that the Br symmetry block gave an abnormally large ( of about 
' L#M 

^-1 Q 
1 X 10 e.s.u. 

21 
Flett measured the intensities of the C-H stretching vibration 

bands of a number of toluene derivatives, -which had substituents para 

to the methyl group, on the methyl group, or both. Ke •was able to 

coirelate the variation of the intensities of the aliphatic and aromatic 

C-H bands iidth the electron donor or acceptor character of the substituent. 

However, he did not atten^st to obtain bond moments or bond moment deriva
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tives. 

There are still, perhaps, insufficient infrared intensity data 

available to properly evaluate its real position in molecular spectro

scopy. However, it is apparent that, although bond moraents and bond 

nionent derivatives derived froa intensity studies of different bands 

of a given molecule are not always consistent, the further study of 

vibrational band intensities -will lead to a better insight of the elec

tronic structure of .-aolecules. 
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THEOET 

Since the theory of infrared intensities and nolecolar normal 

coordinate analyses are •well discussed elseishere it iroiild serve little 

pxirpose to repeat the development of the theory here. In particular, 

22 
the excellent book by Wilson, Decius and Cross provides quite con-

plete derivations and discussions of these theories together mth the 

references to the original literature of the developments. TThat fiill 

be attempted here is to provide a brief survey of the theory basic to 

the Tirork to be described later. 

Infrared Band Intensities 

If one assumes the validity of the well knovm laTr for th3 absorp-

""GPl 
tion of monochrcanatic radiation, I = I e , -shere I is the inten-

' o ' o 

sily of "tiie radiation incident upon a cell of length 1 containing an 

absorbing gas at partial pressure p, I is the intensity of the trans

mitted radiation and a is the molar absorption coefficient, then the 

absorption of a given absorption band inaj'" be described by the integrated 

absorption coefficient at unit pressure. 

A = [ a ( ^ ) d ^  " J L f  ( 1 )  
^ pi-' I 

The integration is carried out over the frequency range of the 

absorption band. vYith a spectrometer of infinite resolving potrer 

Iq/I "srould be measured directly, hovrever, actual spectrometers do not 

measure Iq/I but rather measure the integral of intensities of fre
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quencies over a range of frequencies. 

T = r 1 (^>) g (V, %>') di>. (2) 

T is the apparent intensity detected at an instrument setting 

(the central frequency admitted by the finite slit) and g ( "P , ) 

is the slit function, i.e. the fraction of the radiation of actual 

frequency admitted at the instrument setting ^ . The inte

gration is carried out over the range of the finite slit mdth (all 

for -which g()),^ ) 0) but since g soon vanishes outside 

a narrow range centered at , the integration can be carried to 

* oo , Thus one nay measure the apparent integrated absorption coef

ficient. 

n 
>) =  ̂

, apparent — , 
J pi y 

In *^0 
9' . (3) 

7 Wilson and Wells have shoTun that if does not vary rapidly 

over a slit nidth, and if either the resolving po-^fer is high compared 

to the variation in a or the resolving power does not change snich 

over the band that 

Tiim B = A. (U) 
pl^O 

By measuring B at different values of pi (by varying either p or 1) 

and extrapolating B to zero pi, one can find A, the true integrated 

absorption intensity. 

One can expand In T^^/T for small absorption and keeping the first 

term of the eaqjansion get 



www.manaraa.com

- 9 -

C » C 'Tq - T d . (5) 
pi J T 

23 Th-ip method vas used by Bourgin . This method is quite sitnple to use 

in that the "absorption areas" \ - T ^ ̂ can frequently be 
J T 

measured directly on the recorder chart mthout replotting. 

The true integrated absorption A may be obtained by extrapolation 

of C similar to the extrapolation of B. Although lim C is equal to A 
pl-^0 

and thus lim B , at all finite values of pi, C is less than B and the 
pl^O 

extrapolation curve of C has greater curvature than that of B, in prac

tice, therefore, one ras.y expect the extrapolation of B to yield a Tnore 

accurate value for A than the extrapolation of C. 

Because of the rotational fine structure of the vibrational band, 

e:ro (-apl) will ordinarily vary with extreae fluctuations on passing 

through the individual lines of the vibrational-rotational band. The 

addition of a sufficient pressure of non-absorbing foreign gas can 

broaden the lines of the rotational fine structi3re and elirdnate the 

fluctuation in ero (-c^l). Unless the spectroiaeter has high resolving 

poTier, it is still necessary to obtain A by extrapolating B. Although 

extreme fluctuation in ero (-ĉ jI) may be eliminated by pressure broad

ening of the rotational structure, there remains the variation of the 

absorption coefficient over slit -width because of the band envelope. 

In summary, the true integrated coefficient of a vibrational band 

the Wilson and Wells method may be obtained if (1) the rotational 

fine structure is eliminated pressure broadening, (2) the curves are 

extrapolated to zero pi product so that variations in absorption due to 
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the envelope are eliminated, and (3) the apparent integrated absorp

tion coefficient rather than the absorption is measured in order to 

2sake the extrapolation procedure valid at relatively high absorptions. 

It is -vrell kno-sn that an absorption intensity is related to the 

2k spectral transition probability and thus to the matrix element of the 

dipole moment for the transition. In the case of the absorption band 

22 
of the i'th fundamental vibration this relation is 

(6) 

"vjhere is the integrated intensity of the i^th band "nhose central 

frequency'- is ^ M is the number oi molecules per unit concentration, 

h is Planck's constant, c is the velocity of light and is the 

X component of the dipole moaent (or transition moment) for the transi

tion bet-s»een the ground and first excited states, similarly for(M iy) 

(a i * ̂  • 
If the dipole moment is now expanded in a power series in the 

normal coortiinates, Q, the intensity can be related to the dipole moment 

g 
change mth vibration. 

i J!!JL J 
11 P(p. ' 1 ^ 1  > 

Since the normal coordinates are related to the internal coordi

nates (usually combinations of bond coordinates, i.e. bond stretching 

and bond angle deformation) by linear transformation. 

% = 2 Ly , (8) 
V 
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the are similarly related to — 

^ j 'j 

It is riOT7 possible to use the above results, together tvith the assursp-

tion of bond sonent additivity, to calculate "effective charges" for 

bond stretchings and bond dipole aoments. The Tshere 

is a bond angle deformation coordinate yield the dipole nosients. 

Eonnal Coordinate Analysis 

22 25 
A brief discussion of "Wilson's F G Matrix raethod ' for the 

mathematical analysis of molecular vibrations -will be given here. 

If for a molecule Tihose vibrations are slaple harmonic motion, the 

coordinates of the atoms are expressed as generalized displacement 

coordinates, then the kinetic energy of the molecule (for nuclear dis

placements only) is 

T « 1/2 2 2 a q q ; (10) 
i J- 3. a 

Tjhere, "sd-thin the framework of small vibration theory, the are 

constants. Similarly, tl.3 potentijil energy is 

V = 2/2 2 2 b. . q. q. ; (n) 
i j 1 J 

•jifhere, b. . is equal tof _—)OT the force constants for displacement. 

The Lagrangian eqaations of motion for the molecular vibrations are then 

2 a^ • d ^ 2 b. • q. ® 0 • 
0 dt 3 ^ ^ 
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For 3K degrees of freedom^ there TO-U be 3K such eqaations corresponding 

to i equal to 1, 2, 3^ ••• 3K. means of an orthogonal transformation 

iC 

one can obtain the normal coordinates C^, that allosr one to express the 

kinetic and potential energy in pure quadratic fom (i.e., free fron 

cross products) 

T = V2 2 J (11;) 

V = 1/2 2 . (15) 
Ic 

The Xj^ are the 3N eigenvalues of the characteristic (or secular) equation 

(16) 

and the c., is the jaatrix foraaed from the eigenvectors, ik ® 

It can be seen from this characteristic equation that, in general, 

X may occtir tiith axsy element of the determinant. This can make the 

solution of such equations for some polyatomic molecules quite difficult, 

•fflhere the order of the characteristic equation is large. It is also 

frequently difficult to set up the in terms of internal coordinates 

so as not to include translations and rotations. 

As a means of circ\inrventing some of the difficulties of older 

— 25 
methods of treating molecular vibrations, fiilson devised the F G Jaatrix 

method. (An equivalent method Tsas devised indepently and almost simul-
26\ 

taneously by ELiashevich .) 
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In this Hethod the elements of the G matrix are defined by the 

equation 

3N • • 
G = 2 JL B B ( k,l = l,2,...(3N-6)) ; (17) 
^ i=l ^ ̂  

where N is the nunCber of atoms and nj_ is the laass of the ith atoir.. 

Bjj^ is an eleinent of the transformation relating the Cartesian displace

ment coordinates to the internal coordinates Rj,. 

«k = 2 Bki ==1 • (18) 

(In laatrix notation this is R •= B^) The kinetic energy in teiTiis of Rj^ is 

311-6 311-6 , , . . . -1 . 
2T « 2 2 (G •^) R E = H' G R 5 (19) 

k=l 1«=1 kl k .1 

-1 
"Where G • is the inverse matrix of G, R is the coltuan siatrix "Hhose elements 

are the Rj^. and II' is the "transpose of R. The po"fceatial energy is then 

eapressed by 

3K-6 3I^~6 
2 
k=l 

2V « 2 ^2^ Rj^ = R» F R; (20) 

in "Which Fj^ is one of the force cons"fcan"bs. 

The secular equation is then 

F - G"^ \ I = 0 , (21) 

"Which is comparable in form "fco that ob"fcained earlier. However, if one 

multiplies through this secular equation by G, one ob"balns 

G F - G G"^ X 0 , (22) 
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•which is equivalent to 

G F - E X j = 0 . (23) 

Here E is the identity" or unit natriz. 

In this secular equation the \ occur only on the principal dia

gonal and mth unit coefficients. This form is convenient for expan

sion as an algebraic equation in X as -nell as for many numerical 

methods of solution of determinants. Perhaps one of the most objec

tionable qualities of this form is that it is not syimnetrical about 

its principal diagonal. 

In the case of a synsetrical molecule, one can construct internal 

syumetry coordinates, chosen so as to agree urith the transformation pro

perties of one of the symmetry species appropriate to the point group 

syiiimetiy of the molecule. Since the syainetry species appropriate to the 

point group are orthogonal to one another, the use of symmetry coordi

nates factors the secular equation into block diagonal form, so that 

instead of having to solve a (3H-6) x (3N-6) deteraoinant one may solve 

several of lesser order. The extent of reduction possible, of course, 

is dependent on the number of sy^etry elements that the molecule pos

sesses . 

IQie a priori knowledge of hovr the symnetry of a molecule may affect 

the description of its spectra and eigenfunctions may be gained throu^* 

22 27 28 
the application of the techniques of group theory. ' ' 

The normal coordinates Q are related to R by the transformation 

R - L Q ; (21) 
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in Tjiiich L is chosen so that the energies in tersis of Q are of the form 

2? « Q' L' F L Q = Q» ̂  Q , (25) 

2T = Q« L' G"^ L Q « Q' E Q , (26) 

in Tirhich A is a diagonal matrix of the X's. 

Thus 
L» F L = A , (27) 

L' G"^ L = E (28) 

or L 1« = G , (25) 

and G ? L = L A (30) 

-1 ^ -1 ' 
o r  L  G F = A L  .  ( 3 1 )  

Thus the elements in the rows of the secular equation supply the coef

ficients of the forward transformation (L) "sdiile the colusns serve for 

the reverse transformation (L ̂ ). The solution of the secular equation 

yields eigenfunctions L which are related to the normal eigenfunctions 

L by a trivial constant. The C3q>ressioii 

L» F L = A , (32) 

29 
provides a convenient normalizing condition. The relationship between 

L and L is 

L » L D ; (33) 

t^ere D is a diagonal aiatrix of trivial constants. D nay be found 

from the relation 
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L F L  «  D L ' F L D  -  D A  D  D r ^  X r  ^ TS . (3U) 

The relation 

L L' = G (35) 

serves as a convenient check. 
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EXFERT-iEKTAL LETKOD 

Materials 

The compounds investigated were of the highest purity available. 

Since these compounds have simple infrared spectra which have been 

well analyzed and assigned,^''^^ it TJ&S possible to use the spectra as 

a check for in^jurities. Most of the compounds ̂ rere used as received. 

CHgClg "was purchased from the Hatheson Company. CK2Br2 and ^2^2 

purchased from Eastman Kodak Company. CH23rCl -was given by Dow Chenical 

Company. CHgFg and CHgClF -were given by the Jackson Laboratory of the 

E. I du Pont de Kemours and Conroany. 

It tras necessarj"- to purify the CHgBrg by fl-actional distillation 

through a center rod column using about ItO theoretical plates in order 

to remove a trace (ca. 0.05yo) of CH2BrCl. Another saaple of GHgBTg, 

•which had been furnished by the Dow Chemical Company, contained in addi

tion to the CK2BrCl some CHCl2Br "Hhich apparently formed an azeotrope 

Tiith the CHgBTg. Since the CHCl^Br could not be separated from the 

GHgBTg by fractional distillation using 80 theoretical plates, the sam

ple Tsas not used. 

Solution iieasurenents 

The intensities of the two fundamental vibrations and 

(CH stretching vibrations) trere measured in CCl^ solution for CHgClg, 

CH2SrCl, CH23r2 and CH2l2. These intensities isere measured on a 

Ferkm-Elnier Model 13 infrared spectrophotometer equipped -with a lithium 

fluoride prism and a slit servo mechanism that regulated the slit to 
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provide constant 1^. Sodiuu chloride cells of 0.8 mm path length 

•were used. 

32 
The intensities "srere determined using Hansay's extension of 

the nethod of absorption areas. Since the change in dispersion across 

the bands T?as small, it was possible to measure the absorption areas 

directZy from the recorder chart. 'The area of each band "vjas measured 

at least tTo.ce -with a planimeter. 

Several solutions of different concentration were measured for 

each molecule. The solutions trere used immediately after preparation. 

Vapor Phase Measurements 

The intensities of the V. , V*, and bands of 

CH2CI23 CHgBrCl and CH2Blr2 "srere measured in the vapor phase. 

A Perkin-Elmer IJodel 112 infrared spectrophotometer (a sinj^le-beam 

instrument mth a doiible-pass monochromat-or) ttcls used for the vapor 

phase studies. A lithium fluoride prism iras used to study the 3000 cm"^ 

region ( "9, and V<, ) mth a resolution of about 8 cm~^. For the study 

of the lUOO to 1500 cmT^ region ( ) a CaFg prism tos used inith a 

resolution of 2 to 2.5 cm"^. 

Bie cell used for this •raork tos a multiple reflection cell of the 

TShite type * designed by the author to match the aperature of the 

Perkinr-ELmer Model 112 spectrometer. The 3 V2 inch diameter mirrors 

in the brass cell have a hO cm radius of curvature. The path lengths 

in the cell are multiples of k times the distance between the mirrors 

(U X ho) or 160 cm. The path length of the cell is changed by rotation 

of one of the half mirrors about a vertical axis; the motion tshich 



www.manaraa.com

-1? -

rotates the lairror is transmitted into the cell by the action of a 

differential screw con^jressing a sylphon belloTrs to 73hich a connectirig 

rod is mounted. The external focussing optics used mth the cell -nere 

35 essentially the sane as those used by Pilston and "S<hite for the 

Perkin-ELnier 10 meter cell^ 

A saall glass vacuun manifold connected to the cell by hea-vy i-ralled 
I 

teflon tubing provided a filling system for the cell. Vapor pressure 

aeasureiaents."nere nade -vrith a large bore {9 nm I. D.) open end monometer 

and barometric readings by expansion fron the manifold to the cell using 

the knotm ratio- of these volumes to calculate the final pressure. 

Sariples of CH2F2 and CHgClF (both gases) trere measured into the 

manifold directly fros the cylinders containing then. Liqiiid samples 

•were first allowed to degas by pumping on them, then the manifold tjas 

evacuated and the vapor pressure measured into the manifold. 

After a sample had been measured into the cell, about one atmosphere 

of pressurizing gas "s^s added. Nitrogen was lised as the pressurizing gas 

for work in the 3000 cm~^ region and helium for •work in the lliOO to 

1500 cnT^ region* Helium isras used here because interfering -rater vapor 

Tsas detected in the cylinder of nitrogen at the time of these measure

ments. 

For the measurements in the lUOO to 1^00 cm~^ region, the optical 

path connecting the source housing, cell and monochromator 7?as enclosed 

in a large plastic bag and the Tshole optical path (except that -within 

the cell) "was flushed dry -Rith helium in order -bo lo^ev the isater vapor 

background as much as possible. It -was not possible -to elimina-te the 

•skater vapor spectj*um completely, but in most cases the in-fcerference TIBS 
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negligible. 

The absorption bands of a sample were laeasTired at several path 

lengths (usually four or five); the different path lengths Trere ob

tained by changing the path length tjithin the aniltiple reflection 

cell. Background measurenients "vrere made Tsith the cell evacuated and 

at the corresponding cell path lengths. 

The bands -were replotted on semi-logarithnic paper (In V ) 
T JU 

and then the areas -were measured at least tmce tsith a planiaeter. These 

areas ( ( In ̂  dy ) uere then nlotted against the pi product and the 
J I 

true integrated absorption coefficients trere obtained from the slope of 

these plots. 
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RESULTS 

r The aeas^l^ed intesrated ao-oarent band areas / In d t-* for J ^ 

a given gas Tsere plotted against the pl product, Ihe true intensiiy 

A of a band isras obtained fron the limiting slope of this plot. In 

several cases -rahere other bands slightly overlapped the band of interest, 

it Tfas possible to separate them graphically. In the vapor phase, the 

and ^ bands of all the compounds studied overlap one another 

to such an extent that graphical separation -sfas not possible. Ho-vrcver, 

since the peak intensities of these two bands Trere nearly equal in all 

cases, the individual band intensities of 9 ̂ and i) ̂  have been tak

en as being equal to one half the true intensity sum obtained from the 

lisiiting slope of the intensity sum plots for ^ ̂ and ^ ̂ (figures 

1 through S). 

With the exception of all the compounds studied exhibited 

quite sinrole structure for the ^ , and , bands. Since CH„F^ is 
^ - 16 2 2 

a imich lighter nolecule than the other molecules of the series, the P 

and a branches of the , perpendicular band are nore pronounced. 
o 

This fact is the main explanation of the different appearance of the 

3000 cm ̂  region of CKgFg. However, Ste-srart and Mielsen'^^ have found 

from the high resolution spectra that a third band overlaps this region 

also. This third band is sost likely the binary coisbination band of 

^ 8 *  p o s s i b l e  t o  l a a k e  a l l o i s a n c e  f o r  t h e  i n t e n 

sity contribution of this third band, but since the ( ^ 8 ̂  

band is very Treak it is not believed to cause appreciable error. 

The ^ 2 t>ands of these compounds lie in the region 1370 to 
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to 1520 cnT^^ this region is usually obscured by the absorption of 

atmospheric Tster vapor. Although the spectrometer "ssas flushed Tiith 

dry gas, this procedure did not cocpletely eliminate the presence of 

Tsater vapor lines from the background. Since the xater vapor lines 

are quite sharp, it is conceivable that they jaight not be canceled out 

in tlie replotting of the absorption band of the saniple gas and thus 

contribute to the expericental error. In particular, the v ̂  ̂ and re

gion of CH23rCl and had rather strong water vapor lines present that pro

bably caused considerable error in the measured band intensity. It maj'-

be seen in Table 1, ishere the band intensities are sunraarized that the 

CHgSrCl V 2 band intensily is soniei^t out of line. Only in the re-

Table 1. Absorption Band Intensities 

in Vapor Phase (cm"^ / atm.-cin) 

CHgFg CEgCaF CHgClg CHgBrCl GHgBr^ 

2.17 

2.17 

0.839 

S> ̂  lOli 39.6 20 5 

9 ̂ lOU 39.6 20 5 

Y3 2.11 5.95 5.52 0.391 

rion of the "9 ̂  band of CH2®^2 "vater vapor lines eliminated 

from the background. 

The band of ̂ 2^2 been reported before as having been 

observed in the infrared. The Raaan-effect data on CHgFg shor 

•uO te at 1508 cm The 9 ̂ ̂>^nd of CH2F2 observed in the infrared 
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in this research at l5o8 « 5 en Prob^ly the interference of the 

•rater -Tapor spectrum has prevented the earlier detection of y 

T? 2 band TOs slightly overlapped by the tail of the quite strong 

2k3$ cmT^ V g band of Cli2?2 • band area of the ^^-^2 3 

separated graphically fron the "p ̂  tail, Hovfever, this procedure is 

subject to appreciable error. 

In liquid phase the V 5 bands of the Bethylene halides 

are separated considerably and -^re almost completely resolved. The 

intensities of the V ̂  and ^ ̂ bands of several methjlene halides 

32 
Tjere measured in CC1|^ solution using iJansay's method III. It is to 

Table 2, Absorption Band Intensities 

in CC1|^ Solution (ceT^ / atn.-cm) 

CHgClg CH2SPCI CH2Br2 CH I 
2 2 

21.9 8.70 7JiO 6.69 

•>*6 10.1 19.lt 28.5 Uo.i 

be noticed that the solution intensities are greatly different from the 

vapor phase in-tensities even if one considers only "the intensity sums. 
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INTEEPEETATION OF DATA 

The intensity of a vibration band is related to the dipole de

ment change -with vibration (?)• If the intensity is measured in 

cm ̂  / atm.-cm and in e.s.u. then the relationship is 

^ « I 5.653 (a,)2 . (36) 

Table 3 contains the values of that were detenained for the 

methylene halides studied based from the vapor phase intensities. 

Table 3. 's Derived from Vapor 

Phase Intensities (e.s.u.) 

CHgFg CHgClP CHgClg CHgBrCl 

(ll.) 58.8 35.6 25.3 12.7 8.32 

58.8 35.6 25.3 12.7 8.32 

l2ji \ 8.20 13.8 13.3 3.51 5.18 

In order to interpret the in terms of bond moment parameters, 

the normal coordinate transformation matrices -were needed. Normal coor

dinate calculations Tiere made for CH2F25 CHgBrg, CHgClF and 

CHgBrCl. The force constants necessary for these calculations "were ob

tained from several sources. The force constants for CH2CI2 and CHgBrg 

37 
ircre those determined by Decius and the force constants for (^^2 

38 
were those determined by Pace . Pace's work was an extension of Decius' 
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•type of analysis to fluoromethanes but he found it -was necessary to 

employ more interaction terms in his potential function. Plyler and 

Benedict^^ also extended Decius' type of analysis to fluoromethanes, 

and "vrlthout introducing any more interaction terms. However, their 

calculated frequencies are in much poorer agreement with experiment than 

Pace's. The foTCe constants used for CH2^C1 and CHgClF were those of 

37 30 Decius and Plyler and Benedict-^. The additional constants required 

for the CHgXT molecules were taken as the geometric mean of the corres

ponding constants involving a single constant after the method of Plyler 

and Benedict^^. The normal coordinate calculations were carried out ty 

2ii the methods of Wilson^. 

The solution of the secular determinants arising in these calcula-
28,39 

tions was accon^jlished by a iterative process which yields the 

largest root (or eigenvalue) and at the same time the corresponding 

eigenvector . The eigenvector is related to the normal coordinate 

ly by a trivial constant. 

To obtain the sub-dominant roots and their vectors, a matrix was 

39 
reduced by the method described in Doncan, Frazer and Collar • This 

requires the inverse function which may be obtained by use of the 

relation, 

^r' ^ • ^^7) 

Most of the calculations were carried out using a desk calculator, 

however, the A' vibrations of the CH22r molecules yield secular detei— 

minants of order 6 and their solution was too slow and tedious for that. 

These two sixth order secular determinants were solved using an 
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liO 
Aitken's "deflation" procedure iras used to reduce the matrices, since 

the other procedure tends to cause loss of significant figures if re

peated siany times. 

The sysmetry coordinates, G and F matrix elements, and force con

stants used in these calculations are presented in the appendix to

gether -with the L and L ̂  transformation matrices. 

The calculated frequencies are suseaariaed in Table U. The agree

ment of the calculated "viith observed frequencies is quite satisfac

tory for the most part. However, the agreement in the case of CH2CIF 

is poorer tlian one rtould like and the calculated V ^ of GHgBrCl is 

distressingly high. 

It is very likely that approxLtoating the additional force con

stants required for the Ch-22iy molecules as the geometric mean of the 

force corresponding to that of the molecules containing a single 

halogen, is a poor one. Since calculated frequencies are less sensi

tive to inexact si^enfunctions than are other parameters, it isas not 

believed that the normal coordinates calculated for CHgClF and CH^BrCl 

are sufficiently reliable for calculating bond moment parameters. 

Also the CE2BrCl ^ intensity was obtained under -srorking conditions 

•nhich "were very likely to cause error. 
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Molecule V/ Calc. Obs. 

CHgFg 3005 29k9 1.9 

-)7^(A^) 1503 1508 -0.3 

ygCAi) 1127 1116 1.0 

553 529 ii.5 

20^ 2.1; 

V^(3^) 1218 1176 3.6 

CHgClg Vi(Ai) 2999 2985 0.5 

lii35 lii2U 0.8 

715 706 1.3 

-y^^(A3_) 297 286 3.8 

^6^%) 3°77 3018 1.0 

9^(aj_) 899 898 0.1 

CHgBTg >^i(Ai) 2999 2988 0.ii 

^;?2(Ai) 576 579 -0.5 

173 17U -0.6 

^5(3^) 3076 3065 0.3 

y^(B^) 810 813 -0.lt 
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Table U . (contd.) 

iiolecule v; Calc. Obs. A% 

-V^CA') 2999 29^1 o,U 

S'JCA') 1U21 lk02 1.3 

VjCA') 12l;5 1225 1.6 

723 728 -0.7 

VjCA') 599 606 -1.11 

Vi.(A') 303 226 3i;.l 

VfiCA") 3077 3060 0.6 

•y-jCA") mo 1130 0.9 

V^(A") 8U7 852 0.6 

CHgdF -fl(A') 3005 2993 0.1i 

ĵCA') i9e m70 5.0 

VgCA') Ili25 1351 5 *5 

:?9(A') 9^ 1068 -10.T 

•>>2(A') 7k9 760 -iJi 

388 385 0.8 

%(A") 3080 30U8 1.1 

V^(A") 1281 123li 3.6 

y^CA") 989 lOOJi -1.5 
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The relationships betvjeen the ps and bond laonent parameters 

•were obtained by considering the gecnetry of the nolecule. 

Table S-. Dipole Moaent Change Transfonsation 

Coefficients for CH222 Vibrations 

(PT JcH C ^ ) c x  Acx 

ft 

fe V273" 

4. 

i^en a synmetry species such as the B-, of CH2X2 contains a rota

tion, one jnust be careful that the condition of no resxiltant ai^lar 

momentim be inposed upon the vibration, 'when obtaining the transform 

nations from to bond moment parameters. The transformations 

then TTill be several simultaneous equations. 

Table 6. Coefficients of the Equations for Vibrations 

^ (^JcH ^ Vex 

Molecule / ] (#-L /^CH 

CH2F2 ^6 1.15 -0.0738 2 10  ̂ -0.0738 X 10  ̂

-0.607 0.210 

CH2CI2 S6 1.15 -0.0675 X 10  ̂ -0.0675 X 10  ̂CH2CI2 

^7 -0.669 O.lliS 

CKgBTg 1.15 -0.0662 X 10  ̂ -0.0662 X 10  ̂CKgBTg 

®7 —0.686 0.131 
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The coefficients from Table 5 and Table 6 together -ifith appropriate 

L matrix transfcmations frere used in deriving equations relating the 

Sa 
to the bond moments and bond laoaent derivatives. The coefficients 

of these equations are presented in Table 7. 

Table 7. Ckjefficients of the Equations 

^ ^ ^ v-c. - v.. 

a b c d 

CHgF^ 1 (Q^^) 0.8U 
-0.05 xl0^2 0.11 xio^ -0.0? xlO^ 

3 (q,) 
0.02 xlO^ 0.02 3clC^° -1.21 xio^ O.Cl; xlO^ 

6 (%) 1.20 xlO^ 0 o.oli xlo2° -0.12 xlO^^ 

CHgClg 1 (Ql) 
0.8U xlO^^ -0.05 xio^ 

20 
0.11 xio^^ -0.05 xlO^° 

3 
(%)  0.02 xlO^ 0.06 xlO^ 

12 
-1.22 xlO^ 0.01; xlO^ 

6 (%) 1.21 xlO^^ 0 0.03 xlO^ 
20 

-0.09 xlO 

^2^2 1 (Q^) O.Sli xlO^^ -0.05 xio^^ 0.11 xlO^® -0.01; xlO^^ 

3 (Qi,) 0.02 xlO^ 0.05 xio^ -1.22 xlO^ 0.06 xlO^^ 

6 (Qg) 1.21 3dO^^ 0 0.03 xlO^ 
20 

-0.09 xlO*^^ 

If the assunrotion is jaade that the bond dipole noment does not 

change Tshen the bond angles are deformed and also that the nolecular 

dipole moment is the vector sun of the bond dipole moments, then it 

is possible to solve the equations of Table 7 and 

T ° ̂ CH Acx (38) 
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sisml'taneously for the bond moment paraiDeters. Ihe motion of halogen 

atoms is too slight ir. these vibrations to obtain (with sig-
>- CK 

nificance. The results are siffinsariaed in Table 8 together -with the 

values of ihe moleculsr dipole aioments^. Hie values 

Table 8. Bond Polar Fl'operties (in e.s.-a.) 

CHgF2 CB^Cl.^ CHgBTg 

X 10"^° 1 1.66 to 1.^5 i 1.39 to 1.25 i 1.26 to 1.23 

X 10~^ t 0.01 to 0.12 i 0.06 to 0.15 1 O.Oii to 0.13 

X lO"^ 0.8U to 0.3lt O.lj.0 to 0.11 0.16 to 0.02 

/-y X 10"^° 1.93 1.62 1.5 

X lO^^^Cassuated) 1.5 1.3 1.2 

-10,  ̂
^QgXlO (assamed) -0.1 -0.1 -0.1 

calculated rising the assumed values of /^CH 
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(INCLUSIONS 

The infrared intensities and bond polar properties of the 

meti^lene halides show the pronounced effect of the different ha

logens on the effective charge (^) of the C-H bonds. The effect 

on the is apparently rather uniform. The of the methy

lene halide molecules, hosrever, is smaller than in most other cai^ 

bonr-hydrogen conpounds. 

The observation and intensity study of the CE2F2 ^ con

firms the assignment of this band, previously detected only in the 

Hainan effect. 

bands in solution compared to their intensities in vapor phase in

dicates strong solvent pertxirbations and suggest that one should be 

extremely cautious irtien atteiopting to interpret solution intensity 

data in terms of polar parameters of the isolated molecule. 

The great difference in the intensities of the ^ and 
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APFEIIDIX 

The several matrices used in the normal coordinate calculations 

and the calculated noraal coordinate transformation natrices are 

tabulated iri this appendix. Included here are the general syametry 

Coordinates, G (kinetic energy) matrix and F (force constant) matrix 

elements for ^1 sy^s'f^ries) and CH2XJ molecules. 

Table 23 contains the values of the force constants that -nere 

used in the calculations. 

The calculated normal coordinate transformation matrices for 

CE2F2, CHgClg and CH^Brg are contained in T^ble 2^, and those for 

CKgClF and CHgBrCl are contained in !feble 2$» 
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Table 9» ^^^^2 Coordinates 

= C-Xi ) ai = = Xi-C-Hi ) 

^i ^ 
= ( C-ri ) °2 • = A( Xi-C-Eg ) 

? = A( x-a-x ) 03 = = A( Xg-C-Hg ) 

T = ' A( K-C-H ) % ' = ^ ( Z2-C-HT ) 

Taible 10. gyrmetry Coordinates 

Species 

u % R2 ^1 ^2 ®i Cg ^^3 % r 

Si 0 0 1/1/2 1/V2 0 0 0 0 0 0 

^2 VV2 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 VV5 -VAT? 

0 0 0 0 -VV12 -i/V  ̂ -i/M -2//35 2/A/12 2/YI2 

% 0 0 0 0 VW6 1/S 1/S 1/^ 1/S 1/S 

Table 11. CH^Xg Symmetry Coordinates 

Species 

u Si E2 ^1 ^2 ®2 "3 
a 

h. h Y 

^6 0 0 VV5 -vv? 0 0 0 0 0 0 

^7 
0 0 0 0 V2 -3/2 -1/2 V2 0 0 
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Table 12. CH2Xr Internal Coordinates 

= A(o-x) 

Py = A ( C-J) 

= A( ) 

- 4C^-C-Hi) 

S-i " 

P = ^ ( X-O-T ) 

4( H-C-H ) 

Table 13» Syiainetry Coordinates 
iP Species 

U ^ ̂jr ""1 "*2 °xl °x2 '^rl ^r2 ^ ^ 

1 * 

^2 ^ 

1/4/2 VV2 

Sj^ -VA^ -i/V^ i/S' 

\/S vvs" -2/Vr 

V# -2/j^ 

s» <i 1/V^ V'i^ i/v^ 1/y^ 

^ Blank spaces in IT matrices are 0« 
S' = 0. (redundant coordinate) 

Table 1U» CHgXI ̂ ynmetry Coordinates 
1" Species 

U Rj. Ry ri rg ®xl ®3C2 ^r2 ^ Y 

Sy * Vt^ -1/^/2 

So I/V2 -1/^2 

3. 

* Blank spaces in U matrices are 0. 
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Table !$• G Matrix Elements Ox CH2X2 

Species 

±1 — + •=— 

^12= -2 
3% 

-S(M) 

•»= -f G-J) 

G22-
aix 3inc 

f (M) 

f (i-i) 
°33= i— + h-+k=-

d'm,, ̂  53^ ̂ D y 

2 Vd»mH D'njjj.y ^ d' DV 

^3? = 3/1.1 V 2_/l^l\ 2 
2 V d ia« D'mJ W D / 
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Table 16. G Matrix Elements of 

B3_ Species 

^66 = 

=67 = 

^77 = 

i_+lL_ 
Hh >q 

"2 
3nJc 

r- + h (k*^) 
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Table 17. G llatrix Elements of CKgXI (E2j>iny) 

A' Species 

G32 = 

Gi2 = 

Ol3 = 

GTjlt = 

^16-

^22-

'2h-

"26 = 

0^3 = 

03^ = 

^36 -

^4li = 

1 
% °c 

-1 

"k 

^nic 

Stac ^Dj, d J 

kH (L.^1) 
9^ viy 

ny ac 

'kS 
9 dale 

L-
9 dJHc 

®i/ 

-21^ l/'l.lN 

-4. i.('2^_5) 
-"c l^Dj. a-* 

-C l_(S_ . 2 _  i\ 
T  3 /  

it .2 .2 /n . 3 
3355; + 
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Table 17. (contd.) 

G i r - s r - l  1  i / ^ 1  3  , 2 ^  
3d'ni« 3r^iny " \. d " dD^j 

Gw= -2^2 _1 fl^ 6 £__\ 
3d^^3i:^By 

-i_ 

7 1 . 1 . 3 lii N 
3d*m„ &B^ Hy 3^ V <i' ̂  " dDy / 

^ 3d5^ 31^11^ "'"13% \d=^^^ dDyj 

• 1 /3 
"^I^UxDy 

G,, = 1.2 .3 . 1 /11 27 
35?3;+3^-^2^^1SK;(.5^+^j 

4- 1 /12 ,6 ^ 12 . . 20 N 
^ 1^ ̂ Dy- dDj. D^y dl^ ; 

Table 18. G Matrix Elements of CH2Xr 

A" Species 

G^^ =: 1 ,3 • 1 / 1 , 3 ̂ 2 
'' d^niH 2D»ic^ d dJ 

G„j, - fi 3 >> 

07?= -_i_+/l+^)A+^-'i i-

^88 - _1 4- k-
H* 3ni^ 
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Table 1?. F Matrix Elements of CllgXg 

Species 

Fll = fj. 

^12 = ^13 = ^lU ~ ® 

F22 = 4 + 4  

P -
^23 - % - V 
^ 2 U =  ^  ̂ 4 + 4 ' + ^  ( 4 + 4 >  

^33= ^ ̂ 

F„ = -2 ( ) + 1 ( / - f'' ) 

^!4.= I + 

+ 1  ( 4 + 4 >  

Table 20* F Eatrix Elements of CR^H^ 

Species 

J-
^66 = ^r 

F^t = 0 

^77 " ^ ^ ^ ^ ^ 
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Table 21. F Ziatrix Elements of CH^XT 

A* Species 

> Bv 

Fi2 = fj 
XY 

FI3 = F23 II 11 \A 

II 

3 'Rxtty 

II s: 
1 R<a j[ 

1 
22 = Ry 

11 1 

vl 
1 

^SyP " 

5 Hydy 

^26 = VS-
1 

^ Rya* 
— 

^33 = 
1 

II 1 
•5 
( 2f ̂ 

ay 
+ 2p + . 

a* 

3 
+ 2f + 

ax 

1 
) 

= 1 
3 
(fl -ay a 

,1 

^1;6 = 1 
I a - f^ -ay 

'36 

2f^ ) 
RyQ jt 

1 2 U 
: -kf 'lif +2 
Y a*r a 

Cy 
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Table 21. (contd.) 

II 1 
5 
( fa - 2^ - ) 

^S6 ' 
1 
3 

< ^ ) 

F66 = 1 
1 

1 - 3  1  
( f„ + fl + 2f 0 ) a a p 

Table 22. F Matrix Elements of CH2Xr 

A" Species 

V"i 

^78 

= f - r 

F05 . 0 
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Table 23. Force Constants 

.1 1 -2 
The following constants are assurced to be zero: ' 

1 2 - 1 1 2 1 2 2 2  _ 3  
ri yS"" yr X ,r , and . 
ra ' ra ^ rp ' rr ' ry ap Y ^ 

K _n 
The numerical tmits are 10 dyne cii for two stretching coordi

nates, 1? dyne for bending and stretching, and 1(?  ̂cJyue cm for turo 

bending coordinates. 

r^O-F - 1.35 A, r^C-Cl = 1.75 A, r̂ G-Br « 1.86 A, all " pQ 

- 109° 28'. 

Constant Teras involved X»F X=C1 X=3r (Pace) 

fj C-Xj : G-Xj- 6.26 3.383 2.81iO 6.2li6 

2  . . .  
fjj C-X^ : C-Xj^ 0.96 0.332 0.186 0.96? 

1 . . 

G-H^ : C-H^ 5.0ii 5.01^ 5.0U 5.0li 

1 

^Ra 

2 
0-Xj : H-O-Xjj -.21 -.l61i -.152 0.000 

1 
fj^p C-Xj. : Xj-C-Xj^ 0.3ii 0.338 0.3it2 0.6U1; 

2 
• \:~°"^1 "••3^ "•^5'0 0.00 

a 
f H.-C-X. : H.-G-X. 0.675 0.687 0.559 0.952 
" J J J J 

2 
f„ H.-G-X^ : H.-O-X,. 0.05b 0.009 -.005 0.179 

^ 
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Table 23- (contd.) 

Constant Terms involved X=F X=C1 X=3r 

a 

X«F 
(Pace) 

^ K.-C-X. : -'01^8 -,03h -.026 ^.OOh 

H^-C-X- : H,-C-X, -.065 -.060 -.llU 

fp 

fp 

X^-C-Xj^ : X^-C-Xg, -.10 -.037 0.039 0.111 

H.-C-H^ : H.-C-H, 0.530 0.530 0.530 0.530 
y «j iv j k 

C-X : H-C-H -.liiS 

H-C-X : H-O-H 0-01? 
ar 

4c ^ °-30^ 

X=C1 J Y-F X=Br ; T=C1 

f| C-X : C-T 0.565 0.2li85 

fp X-C-I ; X-C-T 1.U71 l.m5 

H.-C-X : H.-C-I 0.21 0.002 
a J ;} 

4 a -186 -.157 (=f| ̂ ) 

4 p C-X : X-C-I 0.339 0.3ii0 (=fp^ 

fjj H.-C-X : H,-0-Y -.086l -.062 a J X 
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Table 21;. Normal Coordinate Transfortaations 

L and L ̂  (in imits of g ) 

CHgXg 

CH2F2 

(^2^) Qi % % 

Sj 1.023 xlO^^ 0.03035 3ci0^2 -0.002927 xlO^^ 0.01986 xl0^° 

Sg -0.06399 xlO^^ 0.3165 xlO^^ 0.05702 xlO^^ 0.02liS9 TO LO ^ 

20 
0.1566 xlO -0.3213 xl02C 0.1213 xlO^^ -1.010 xlO^^ 

-0.03337 xlO^° -0.1009 0.3ii59 XI0I2 1.079 xlO^^ 

(Ai) S2 S3 \ 
r\ 0.9697 xlO" 

-12 -0.06272 xio' -12 0.02720 xlO" -20 0.009039 xlO* •20 

Qg 0.20mi0 XlO" -12 2.729 xio' 
-12 

-0.2970 xLO' 
-20 

-0.3ii5l xio" -20 

-0.08186 3dD" -20 2.561 XlO' -20 1.962 xlO' -12 1.780 xlO" -12 

% 0.07521 xlO" -20 -0.5699 xlo" 
-20 

-0.6560 xio' 
-12 

0.3213 xio" •12 

L (3i) Qy 

S6 1.0li6 xl0^2 0.038ia xl0^2 

S7 -0.1959 xlD^ 0.3325 xlO^° 

L-^ S6 Sj 

% O.9USO xlO"^^ -0.0i4l;00 xl0"20 

Q7 -0.2217 xlO*"^2 1.191 xio'^^ 
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Table 2h.» (contd.) 

(SjClj 

L (Ai) % 

Si 1.023 xl0^2 -0.01182 xlO^ -0.0002753 xlO^O 0.02131 d02° 

^2 -0.05879 xlO^^ 0.272ii xl0^2 0.03898 xlO^ 0.06778 :ao^ 

^3 
0.1371 xl0^° -0.168c :ao^° O.llilS xlO^^ -1.009 xio^^ 

OA 
-0.0531U xlO"''' -0.1839 xlO^° 0.1285 xlO^^ 1.107 xio^^ 

L-^ (A^^) Si 32 S3 Si 

Ql 0.9730 xlO~^^ -0.03325 xiO~^2 0.01620 xl0"20 -0.00191 xl0*"^° 

0.1976 3.088 -0.3625 xlO"^*^ -O.521U Xl0~  ̂

% -0.02670 xlO~^° xl0~20 3.37ii xlO"^ 2.832 xlo"^^ 

91, 0.08851i xlO"^® 0.0ii71it xlO~^° -0.1i526 xio"^^ 0.14,868 xlO"^ 

L i Q7 

% 1.050 xl0^2 0.01770 xl0^2 

S7 -0.1513 3i0^° 0.77U8 xl0^° 

L~ (3l) S6 S7 

—12 —OCi 
% 0.9h91 xiO 0.02958 siO 

—12 —20 
Qy -0.1368 xlO 1.295 xlO 



www.manaraa.com

- 6o -

Table 2U» (contd.) 

CHgBTg 

L U^) 9i <32 Q3 % 
Si 1.023 xio^^ 0.008207 xio-^ -0.0002523 xIO^^ 0.02030 xiO^'^ 

S2 -0.05752 xio^^ 0.2l|)iii xio^^ 0.02ii20 3LL0^ 0.06673 xlO^ 

0.1323 xlO^ -0.1656 3d.0^° 0.03712 xlO"^ -1.005 3ClO^^ 

Sĵ  -0.05656 Xio^ -0.1721 xlO^O 0.08192 xlO^^ 1.107 xlO^^ 

L~- (•A-i) ^2 ^3 

% 0.9736 ri0~^^ -0.02596 xl0~^ O.Ol381i xlO" -20 -0.003697 zlO' •20 

0.2119 xlO"^^ 3.363 xlO"^^ -0.1^378 xio' -20 -0.60i;5 3clO 
•20 

% -0.08071 6.563 xlG"^^ 5.1i08 3dO* -12 xlO" -12 

0.08766 xio"^ O.O2U69 xl0~^° -0,ii599 3dC* 
-12 

0.ii827 xio" 
-12 

L (3^) Qg 

S5 1.050 xl0^2 0.01369 xi0^2 

Sy -0.11i26 xlO^° 0.7581i 3tiO^° 

ii 3^ Sy 

Q- 0.9ii99 xlO~^2 -0.01715 xlO~20 

0.1787 xio"^ 1.315 xlO""^° 
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Table 25. Normal Coordinate I'rarisfomations 

L and L ̂  (in units of ) 

CHgXI 

CHgClF 

L (A') 
s 

^1 0.3197 xlO^^ -0.02031 xlO^^ -0.0U296 xlO^^ 

Sg -0.1128 xiO^^ 0.3027 xlO^^ -0.0U820 xlO^^ 

S3 O.OO818I xiO^^ 0.01338 :d.O^^ 1.022 ±10^^ 

su 0.2972 xlo20 -0.6000 xlO^® -0.1030 xlO^^ 

0.09565 xlO^O 0.08037 xlO^ 0.1223 xl020 

56 0.08235 :do20 O.iiSOl xl0^° -0.0ii762 xlo2° 

L (A*) % % ^6 

^1 0.02178 xl020 -0.0582ii xlO^O -O.0570U xlO^O 

o.oiait2 xlO^O -0.1599 xl0^° -0.03518 

S3 0.003739 xlO^° -0.01^57 xlO^ 0.001219 xlO^ 

\ 0.5822 xlO^^ -0.7682 xlO^ 0.1135 xlO^^ 

H 
1.008 xlO^^ 

12 
1.099 xlO --0.001602 3d0^ 

H -0.2588 3dO^^ O.2O45 :dL0^2 0.1933 xl0^2 
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Table 25. (conixi.) 

CHgCll^ 

L""  ̂ (A') Sg 

2.651; 2lO~^^ -0.5287 xlO"^^ 0.12ii7 xlO'^^ 

0.61i59 3cl0"^^ 2.051 riO"^^ 0.1259 xlO"^ 

-0.02808 xio"^^ -0.07332 xio"^^ 0.^690 xlO~^^ 

-C.2U89 xio""^ 1.112 xl0~^° C.01575 xlO~^° 

-20 —?o -9n 
-0.09831 XlO -l.li;7 :dO -0.11i9U xlO 

Qg -2.9la xlO"^ -2.029 xLO~^ 0.06939 xl0~^ 

L~^ (A«) S6 

Ql 0.1282 3d0"^ 

Qg -0.1251 xlO~ °̂ 
-20 

-0.02385 xlO 

0.5253 xlO~^^ 

-12 
-O.U768 xlO 

1.523 xlO"^^ 

0.02865 xlO~^° 

0.1233 3d.0~^ 

0.01055 xlO~20 

0.60W; xlO"^ 

0.3903 xlO~^^ 

0.06030 2IO 
-12 

C.6081i xlO-^O 

-?o 
C.636I1 xlO 

-0.01359 xlO~^° 

-0.1698 xio' 

0.05112 xlO" 

3.0i;3 xlO' 

-12 

-12 

-12 
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Table 2$. (contd.) 

CHgClF 

L (A«) r 
"7 ^3 

Sy 0.7875 xlO^° -0.105s -0.5556 xio^o 

S3 0.02096 xlO^ 1.050 XI0I2 0.0151a 3do^° 

^9 
0.271^9 xlO^° -0.1368 xlO^ 0.9571 xlO^^ 

(A") Sj ^8 S9 

% 

1.053 xlO""^® 0.1653 
n^-20 

3ClO 0.6079 3dO"^° 

% -0.01655 xio"^^ 0.9U75 T r>-12 2IO -0.02ii85 xlO""^^ 

Q 
9 

-0.30it8 xl0"^° 0.08229 300"^ 0.8666 xLO"^ 
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Table 25. (contd.) 

CK23rCl 

L (A-) «1 s 

Si 0.2366 xlO^^ -0.1637 xlO^ -o.oUoU? xlO^^ 

0.0953I4 xlO^^ 0.2836 :ao^'^ —0 .Oljlli6 xlO^^ 

0.0132ii xl0^2 0.003963x10^^ 1.023 xlO^^ 

0.2028 xlO^ -0.03931 xlO^ -0.07500 .10^ 

^5 0.06U06 xlO^O -0.01627 3dO^° 0.117ii 
20 

xlO 

% O.ITU? xlO^ O.Oii836 xlO^ -0.03991 xlO^ 

L (A') % 

0.07i;75 xlO^ -0.03S57 xlO^ -0.05003 xlo2° 

^2 
-0.1055 xiO^ -0.06263 xlO^ -0.01351i xl0^° 

-0.001587 xlO^° -0.02115 xlo2° 0.002937 xl0^° 

^1. I.06U 

O.3U9I 

xl0^2 

xiO^^ 

-0.ii3S7 xlO^^ 

12 
l.i;21 xlO 

0.05273 

-0.01237 

12 
xlO 

xlO^^ 

^6 -0.5380 xl0^2 O.liiOli xlO^ 0.l5ii9 :dO^^ 
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Table 2$» (contd.) 

CHgBrCl 

L-^ (A') Si ^2 ^3 

2.737 3dO"^^ 1.565 xi0"*^2 0.3161 xio"^ 

Qj, -1,215 xlO-^2 2.908 xiO"^^ 0.06k9B xlO-^ 

Q3 0.01897 zio"^^ -0.01932 3d0~^^ 0.9738 xlO-^ 

-0.1i297 xlO-20 -0.01298 xlO~^ -0.008758 xio'^ 

-0.07133 O.O936U xlO~^ -0.08957 xlo"^ 

% -3.263 xio"^ -2.520 xlO"^ 0.2739 xlO"^^ 

L-1 (AM Sj^ % ^6 

«1 0.2852 xlO"2° 0.1970 xlO"^ 0.7338 xlO~^ 

^2 
0.2160 xlO'̂ O 0.2832 xi0~^° -0.2307 xlO~^ 

% -0.006361 xlO*"20 0.01075 xlO"^ -0.006677 xl0""20 

% 0.7216 xlO-^ 0.2586 3c10~^2 -0.3207 

-0.1575 0.6h66 xlO~^^ 0.09ii20 xlO-^ 

% 1.761i xio"^^ -0.09052 xio"^^ 3.826 xlo"^^ 
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Table 25» (c ontd.) 

CHgBrCl 

L (A") ^7 % % 

0.6502 xio^ 0.01516 xio^ 0.1a95 Xl0^° 

Sg -0.09999 Xl0^° 1.050 xlO^ -0.1083 Xl0^° 

20 1_P 2^^ 
-0.7002 xlO 0.00U79I xio 0.867ii xlO 

3 

l"^ (A«) 3^ Sg 

1.009 xIO"^° 0.1806 xlO~2° 0.8135 xl0~^° 

Qg -0.01227 xlO~^ 0.9U92 scLO*"^ -0.01515 xio"^ 

0.i;895 ' 3d.0~^ 0.03152 xl0"20 0.7577 xio"^ 


	1955
	The absolute infrared absorption band intensities of the methylene group vibrations of some methylene halides
	Richard Marion Hedges
	Recommended Citation


	 

